Kiana最近沉迷于一款神奇的游戏无法自拔。
简单来说,这款游戏是在一个平面上进行的。
有一架弹弓位于 (0, 0) 处,每次Kiana可以用它向第一象限发射一只红色的小鸟, 小鸟们的飞行轨迹均为形如 y = ax2 + bx 的曲线,其中 a, b 是Kiana指定的参数,且必须满足 a < 0 。
当小鸟落回地面(即 x 轴)时,它就会瞬间消失。
在游戏的某个关卡里,平面的第一象限中有 n 只绿色的小猪,其中第 i 只小猪所在的坐标为 (xi , yi) 。
如果某只小鸟的飞行轨迹经过了(xi , yi) ,那么第 i 只小猪就会被消灭掉,同时小鸟将会沿着原先的轨迹继续飞行;
如果一只小鸟的飞行轨迹没有经过 (xi , yi) ,那么这只小鸟飞行的全过程就不会对第 i 只小猪产生任何影响。例如,若两只小猪分别位于 (1, 3) 和 (3, 3) ,Kiana可以选择发射一只飞行轨迹为y = −x2 + 4x 的小鸟,这样两只小猪就会被这只小鸟一起消灭。而这个游戏的目的,就是通过发射小鸟消灭所有的小猪。
这款神奇游戏的每个关卡对Kiana来说都很难,所以Kiana还输入了一些神秘的指令,使得自己能更轻松地完成这个游戏。这些指令将在【输入格式】中详述。
假设这款游戏一共有 T 个关卡,现在Kiana想知道,对于每一个关卡,至少需要发射多少只小鸟才能消灭所有的小猪。由于她不会算,所以希望由你告诉她。